Rapid report

PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

Author for correspondence:
Jiří Friml
Tel: +43 (0)2243 9000 5401
Email: jiri.friml@ist.ac.at
Received: 15 February 2016
Accepted: 9 April 2016

Sibu Simon1,2,3,4, Petr Skupa5, Tom Viaene2,3, Marta Zwiewka4, Ricardo Tejos2,3, Petr Klima5, Maria Carna5, Jakub Rolcik5, Riet De Rycke2,3, Ignacio Moreno7, Petre I. Dobrev5, Ariel Orellana7, Eva Zazimalova5 and Jiří Friml1

1Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; 2Department of Plant Systems Biology, VIB, 927, 9052 Zwijnaarde, Ghent, Belgium; 3Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, 927, 9052 Zwijnaarde, Ghent, Belgium; 4CEITEC – Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic; 5Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague 6, Czech Republic; 6Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic; 7Centro de Biotecnologia Vegetal and Center for Genome Regulation, Facultad de Ciencias Biologicas, Universidad Andres Bello, 8370146 Santiago, Chile

Summary

- Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate.
- In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles.
- The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes.
- These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.

Introduction

Auxin is a major player among plant hormones and its pivotal role in various plant growth and developmental events has been demonstrated by decades of research (reviewed in: Benjamins & Scheres, 2008; Mockaitis & Estelle, 2008; Vanneste & Friml, 2009). Among plant hormones, auxin is well known for its property of being transported throughout plant tissues in a directional, regulated manner (reviewed in: Kramer & Bennett, 2006; Blakeslee et al., 2005; Grunewald & Friml, 2010). Moreover, the transport-assisted auxin concentration maxima and gradients at the target tissue/cell types have a crucial role in mediating auxin-mediated developmental events (reviewed in Adamowski & Friml, 2015).

The transport of auxin across the plasma membrane (PM) is mediated by at least three protein families, namely the amino acid permease-like AUXIN1 (AUX1)/LIKE AUX1 (LAX) import mediators, the plant-specific PIN-FORMED (PIN) auxin transport mediators, and the plant orthologues of the mammalian
ATP-binding cassette subfamily B (ABCB)-type transporters (Bennet et al., 1996; Geisler et al., 2005; Petrášek et al., 2006; reviewed in Petrášek & Friml, 2009). In Arabidopsis, the PIN family consists of eight members; PIN1–4 and PIN7 localize to the PM to mediate intercellular auxin transport (reviewed in: Petrášek & Friml, 2009; Zažimalová et al., 2010; Forestan & Varotto, 2012). By contrast, PIN5 and PIN8, characterized by a short middle cytosolic hydrophilic loop, still having auxin transport activity, localize in cells of their endogenous expression domain to the endoplasmic reticulum (ER) and were proposed to have a function in regulating cellular auxin homeostasis (Mravec et al., 2009; Dal Bosco et al., 2012; Ding et al., 2012).

PIN6 is another member of the PIN family of auxin transporters, which has been partially characterized. The PIN6 gain-of-function phenotype in Arabidopsis thaliana revealed a role for PIN6 during lateral root development (Cazzonelli et al., 2013), while a role during leaf vasculature development and nectar secretion has also been reported (Bender et al., 2013; Sawchuk et al., 2013). In addition to lateral roots, detailed expression study reported their expression in primary root vasculature, cotyledons, cauline leaves, floral stem, sepals and in siliques (Nisar et al., 2014). Despite the indication of a subcellular localization at the ER when expressed heterologously in tobacco BY-2 cells (Mravec et al., 2009) or in Arabidopsis (Bender et al., 2013; Sawchuk et al., 2013), it is noticeable that the middle hydrophilic loop of PIN6 has >250 amino acid residues but the ‘short’ ER-localized PINs; i.e. in PIN5 and PIN8 it is <50 amino acids in length (Bennet et al., 2014). Moreover, most of the Ser/Thr phosphorylation sites, which are known to be important for the polar localization at the PM of ‘long’ PINs (Huang et al., 2010; Zhang et al., 2010), are also present in the PIN6 hydrophilic loop, suggesting that PIN6 may have a unique role, different from the previously described ‘short’ and ‘long’ PINs.

Here, we characterized PIN6 with respect to its evolutionary origin, localization and function in auxin transport and metabolism along with PIN6 developmental roles, revealing unique properties of PIN6 with a dual role both at the ER and the PM.

Materials and Methods

Plant material and DNA constructs

For all experiments, we used Arabidopsis thaliana ecotype Columbia (Col-0). The insertion mutant we used was pin6-2 (Bender et al., 2013). Other transgenic lines used were PIN6:PIN6-GFP (Sawchuk et al., 2013), PIN6 overexpressor: PIN6-OE#14; DR5:GUS/PIN6-OE#14 (Cazzonelli et al., 2013) and DR5:GUS (Ulmasov et al., 1997). The stably transformed, tobacco BY-2-derived cell line GVG-PIN6 (Petrášek et al., 2006) was used for transport and metabolic assays. The 35S:PIN6-GFP plasmids were prepared by the Gateway cloning technology (www.invitrogen.com). The eGFP sequence was inserted in three different positions of the PIN6 coding sequence by overlap PCR and these three independent recombinants were cloned into pDONR221. The expression clone was prepared by an LR reaction between entry clone and expression vector pB7WG2.0. The resulting constructs were transformed into Arabidopsis (Col-0) plants by floral dipping in Agrobacterium tumefaciens liquid cultures (Clough & Bent, 1998). The primers used for the preparation of these constructs are included in Supporting Information Table S1.

Growth conditions

Arabidopsis seeds were sterilized with chlorine gas and stratified at 4°C for 2 d in the dark. Seedlings were grown vertically on half-strength Murashige and Skoog (MS) medium supplemented with 1% sucrose and respective nutrients. Plants were grown under long-day conditions at 21°C in growth chambers unless stated otherwise. GVG-PIN6 tobacco cells were grown as described earlier (Petrášek et al., 2006) in presence of 40 μg l−1 hygromycin and PIN6 expression was induced by the addition of 1 μM dexamethasone (DEX) for 48 h.

Pharmacological and hormonal treatments

ER-tracker dye (Invitrogen) was used in a 1 : 1000 dilution and the seedlings were treated for 30 min in MS liquid medium. BFA (Invitrogen) was used in a final concentration of 25 μM in dimethylsulfoxide (DMSO) stock solution. Seedlings were treated in MS liquid medium for 30 min. FM4-64 (Invitrogen) was dissolved in water and the seedlings were labeled with 4 μM FM4-64 for 5 min in MS liquid medium on ice, washed in MS liquid medium and observed immediately. Indole-3-acetic acid (IAA; Sigma-Aldrich, St Louis, MO, USA) stock solution was prepared in ethanol and plates were prepared with the concentrations mentioned. GUS staining was performed as described earlier (Benková et al., 2003).

Microscopy

A Zeiss LSM 710 confocal microscope was used for GFP and FM4-64 observations in Arabidopsis roots. The same confocal microscope was used also for all immunolocalization images. GUS stained root tips were observed by an Olympus BX53 microscope and images were taken using an Olympus DP26 camera with the help of Olympus cellSens Entry software. Lateral and adventitious root densities were measured by counting the number of lateral and adventitious roots under a Leica EZ2 optical microscope.

Phenotype analysis

For lateral root density measurements, seedlings were grown for 7 d as already mentioned. Each seedling was marked and plates were scanned on a flat-bed scanner to measure the primary root length by using IMAGEJ (http://rsb.info.nih.gov/ij/). Lateral roots on each seedling were counted and the lateral root density was expressed in relation to the primary root length value. To measure the auxin effect on lateral root development, seedlings were grown vertically for 4 d, and then transferred to plates containing the necessary concentration of auxin and grown for an additional 4 d. Then, the lateral root density was measured as described earlier. The adventitious root density (Sukumar et al., 2013) and the lateral
Auxin transport and auxin metabolic profiling assays

For yeast assays, microsomal fractions were prepared from yeast cells as previously described (Liang & Sze, 1998). Yeast microsomes obtained from the fractionations were used to perform uptake assays. The auxin transport assay in tobacco BY-2 cells was performed as described earlier (Petrášek et al., 2006). Auxin measurements and auxin metabolic profiling were done as described in Mravec et al. (2009) and Simon et al. (2014).

Localization assays

Whole-mount immunolocalizations on Arabidopsis roots were performed as described (Sauer et al., 2006). Antibodies were diluted as follows: rabbit anti-PIN1 (1 : 1000) (Robert et al., 2010), rabbit anti-PIN2 (1 : 1000) (Wisniewska et al., 2006), rabbit anti-SEC21 (1 : 1000; Agrisera AS08 327, Vännäis, Sweden), rabbit anti-BIP2 (1 : 200; Agrisera AS09 481), rabbit anti-ARF (1 : 600; Agrisera AS08 325), mouse anti-GFP (1 : 600; Sigma G6539), Cy3-conjugated secondary anti-rabbit (1 : 600; Sigma C2306) and Alexa Fluor 488 conjugated secondary anti-mouse (1 : 600; Invitrogen A11029, Carlsbad, CA, USA). Anti-GFP immunogold labeling method was adopted from Xu et al. (2014) using anti-GFP antibodies. Biolistic transient expression of genes in tobacco BY-2 cells was performed as described in Robert et al. (2010).

Results

Evolution of PIN6 proteins

PIN6 has always been the peculiar one among other Arabidopsis PIN proteins. None of the so far completely sequenced genomes of nonangiosperm plant species contains obvious sequences homologous to PIN6, suggesting that it is absent in plant groups outside angiosperms. Also, in contrast to all other PINs, many published phylogenies did not show any clear PIN6-like sequences in monocots (Carraro et al., 2012; Forestan et al., 2012; Viana et al., 2013; Bennett et al., 2014; Clouse & Carraro, 2014). However, recently published trees show a close association between AtPIN6 and, respectively, a few PIN-like transcriptome sequences from a fern species (Microlepia sp., Viana et al., 2013) and a group of monoliphyte sequences (Bennett et al., 2014). Finally, it was recently suggested that the angiosperm PIN6 clade originated through reduction of a canonical, previously described as ‘long’, PIN protein, from which probably all land plant PIN proteins evolved and independently of other ‘short’ PIN proteins (Bennett et al., 2014). To highlight the phylogenetic position of AtPIN6, we reconstructed the PIN protein evolution using PIN-sequences from the basal angiosperm Amborella, the monocots rice and Brachypodium and the dicots Arabidopsis and tomato (Fig. S1). We recovered all PIN sub-clades that have been identified in previously published PIN phylogenies. Again, PIN6-like sequences from Arabidopsis and tomato constitute a separate clade from all ‘long’ PINs. Also, we did not recover any clear monocot PIN6-like homolog, but a putative sequence from Amborella that could be PIN6-like, further emphasizing a history of recurrent gene loss.

Arabidopsis PIN6 shows a dual ER and PM localization

We designed three independent PIN6-GFP fusion lines by inserting GFP in the PIN6 coding sequence at three different positions: either between the transmembrane domains 3 and 4 (between two glycines at positions 96 and 97, line 35S:PIN6-GFP1), within the hydrophilic loop (between proline 166 and glycine 167, i.e. line 35S:PIN6-GFP2, and between two glycines at positions 252 and 253, i.e. line 35S:PIN6-GFP3) (Fig. 1a). We placed these constructs under the control of the constitutive 35S promoter. We also included in the analysis the PIN6:PIN6-GFP line (Sawchuk et al., 2013), in which GFP is inserted at the end of the central hydrophilic loop and the construct is placed under the control of its native promoter (GFP4). Unlike the other two GFP fusion lines, the 35S:PIN6-GFP1 line showed wavy root seedling phenotype and short plant phenotypes corresponding with the already published data for the untagged PIN6 overexpressor (PIN6-OE#14) (Cazzonelli et al., 2013) and older seedlings developed significantly longer lateral root from root–shoot junction (Fig. S2a–c). Moreover, this construct rescued the partially open flower phenotype of the pin6-2 knock-out mutant (Fig. S2d). Therefore, this functional PIN6-GFP1 fusion was used for further analysis.

In the 35S:PIN6-GFP1 line, PIN6 localized both at the PM and ER (Fig. 1b,c) and identical subcellular localizations were observed...
Fig. 1 PIN6 shows a dual localization at the endoplasmic reticulum (ER) and plasma membrane (PM) in Arabidopsis thaliana roots. (a) Schematic representation of GFP insertion positions in the PIN6 coding sequence. (b) Five-day-old 35S:PIN6-GFP1 primary root tip showing both the ER and PM PIN6-GFP1 localization pattern in the root tip. (c) Higher magnification image of 35S:PIN6-GFP1 primary root cortex cells. (d) Localization pattern of PIN6-GFP in 35S:PIN6-GFP primary root tip vasculature tissue. (e) Co-localization of PIN6-GFP with ER-tracker dye. GFP signal (left panel), ER-tracker dye (middle panel), merged (right panel). (f) Co-localization of PIN6-GFP with PM-staining dye (FM4-64). GFP signal (left panel), FM4-64 (middle panel), merged (right panel). (g) Quantification of co-localization of PIN6-GFP with ER-tracker dye and FM4-64. Error bars, plus standard deviation (±SD) (n = 10 regions). (h) Quantification of co-localization of PIN6-GFP1 with ER marker BIP2, PM marker FM4-64, TGN marker ARF1 and Golgi marker Sec21. Error bars, ±SD (n = 10 regions). (i) Anti-GFP immunogold labeling of 35S:PIN6-GFP1 root ultrathin section. The arrows show ER and PM labels. (j) PIN6-GFP1 after BFA treatment (arrows) in PIN6-GFP1 lines. (k) Co-localization of PIN6-GFP with the PIN2 basal polar marker in root vasculature. PIN6-GFP1 signal (left panel), PIN1 (middle panel), merged (right panel). (l) Co-localization of PIN6-GFP1 with the PIN2 apical polar marker in root epidermis. PIN6-GFP1 signal (left panel), PIN2 (middle panel), merged (right panel). Bars: (b) 100 µm; (c–f, j–l) 5 µm; (i) 2 µm.
for the PIN6:PIN6-GFP line (Fig. 1d). Co-localization study with specific subcellular markers, i.e. ER-tracker dye (ER) and the FM4-64 (PM), confirmed the dual localization of PIN6 in PIN6:PIN6-GFP line (Fig. 1e–g). We also conducted a co-localization analysis with the 35S:PIN6-GFP1 line. Although PIN6 largely co-localized with both the ER marker BIP2 and the PM marker FM4-64, it also showed a weak co-localization with Golgi and trans-Golgi network (TGN) markers Sec21 and ARF1, respectively (Figs 1h, S3a–d). To address the possibility that the ER signal is not an artifact of the ectopically increased expression, we used a weakly expressing 35S:PIN6-GFP1 line and also this line showed ER signal (Fig. S3e). We also treated 35S:PIN6-GFP1 lines with the vesicle recycling inhibitor Brefeldin A (BFA) and observed intracellular aggregation of PIN6 in epidermal cells (Fig. 1j), as was shown for ‘long’, PM-localized, constitutively recycling PINs (Geldner et al., 2001), in contrast to the BFA-resistant localization of ER-localized PIN5 and PIN8 (Mravec et al., 2009; Ding et al., 2012). This provides an additional evidence that PIN6 is also a PM-localized protein undergoing constitutive recycling. As additional test for the PIN6 subcellular distribution, we transiently co-expressed 35S:PIN6-GFP1 and 35S:PIN1-RFP in tobacco BY-2 cells and observed internal ER signal only for PIN6-GFP whereas PIN1-RFP showed dominant PM localization, where it co-localized with PM-fraction of PIN6 (Fig. S3f). In the same way we co-expressed 35S:PIN6-GFP1 and the ER marker 35S:HDEL-RFP and both markers showed perfect co-localization (Fig. S3g). Anti-GFP immunogold labeling on ultrathin sections from the 35S:PIN6-GFP1 primary roots confirmed the dual localization of PIN6 at both the ER and PM (Fig. 1i). Finally, to confirm that the PIN6-GFP1 is full length in all sub-cellular compartments, microsomal membrane fractions were isolated from 35S:PIN6-GFP1 plants and performed western blotting using anti-GFP antibody. We observed only 89 kDa single protein band in both the membrane fractions as well as intracellular fractions, similar to the PIN1-GFP positive control, which also showed a single band (94 kDa) whereas no protein was detected in Col-0 (Fig. S3i).

Since PIN6 showed not only ER but also PM localization, we analyzed whether PIN6 also shows an asymmetric polar localization within the cell. Therefore we analyzed the co-localization pattern of PIN6 with other polarly localized markers like PIN1 and PIN2. We found that in the 35S:PIN6-GFP1 line, both PIN1 and PIN2 co-localized with PIN6 in vasculature and epidermis, respectively (Fig. 1k,l). In the PIN6:PIN6-GFP line, in which PIN6 is expressed in the vasculature of the root meristem zone, PIN6 also co-localized with PIN1 (Fig. S3h). This suggests that the PM-residing portion of PIN6 can adopt different polar localizations and thus may assist in transporting auxin in the directional manner.

PIN6 is a functional auxin transporter

The auxin transport function of PIN6 was analyzed by two independent methods. First, PIN6 was heterologously expressed in yeast and an isolated microsomal fraction was used to run an auxin uptake assay with radiolabeled IAA. Microsomal fractions from a yeast strain overexpressing PIN6 showed a higher retention of radioactivity, which is an indication that PIN6 recognizes IAA as a substrate (Fig. 2a). To characterize the PIN6-mediated auxin transport in more detail, we used tobacco BY-2 suspension cultured cells in which PIN6 was overexpressed under a glucocorticoid (DEX)-inducible promoter (Petrášek et al., 2006). Phenotypic analysis of tobacco BY-2 cells overexpressing PIN6 following DEX induction showed a typical auxin starvation phenotype characterized by reduced frequency of cell divisions, pronounced cell elongation and increased amyloplast formation (Petrášek et al., 2006; Mravec et al., 2008) consistent with presumable PIN6 activity in decreasing free intracellular auxin levels (Fig. 2b,c). To measure the PIN6-mediated auxin transport, we used two radiolabeled synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid (NAA and 2,4-D, respectively). PIN6 overexpression resulted in a reduced retention of the radiolabeled NAA in tobacco BY-2 cells suggesting that PIN6 promoted efflux of NAA from BY-2 cells. The overall decrease in the NAA accumulation was sensitive to the known auxin efflux inhibitor 1-naphthylphthalamic acid (NPA) and the degree of NPA-dependent inhibition was roughly the same for both control and PIN6-overexpressing cells (Fig. 2d). Similar decrease in retention was observed for radiolabeled 2,4-D, suggesting that PIN6 also recognizes 2,4-D as a substrate for transport out of cells (Fig. 2e) as it was reported earlier for PIN7 (Petrášek et al., 2006). These results from tobacco cells show that PIN6 mediates auxin transport out of the cells, similarly to other PM-localized PIN proteins.

PIN6 is involved in regulating auxin homeostasis

Previously, the ER-localized PIN5 and PIN8 proteins were suggested to regulate auxin homeostasis and/or metabolism by mediating auxin transport between the cytoplasm and ER-lumen (Mravec et al., 2009; Ding et al., 2012). To address a potential role of PIN6 in the regulation of auxin homeostasis we analyzed tobacco BY-2 cells that conditionally overexpressed PIN6. PIN6-expressing tobacco BY-2 cells following 2.5-h incubation with [3H]-IAA retained more nonmetabolized, free IAA in cells (Fig. 3a). Such IAA metabolic profile has not been observed for overexpression of any PIN transporter analyzed so far.

To confirm the observations from the metabolic profiling, we quantified the levels of IAA and two IAA metabolites, indole-3-acetyl-aspartate (IAAsp) and indole-3-acetyl-glutamate (IAGlu) in Arabidopsis PIN6-OE#14 and pin6-2 knock-out lines using mass spectroscopy (Mravec et al., 2009). Both knock-out and overexpressor lines showed higher levels of free IAA in the root tips (Fig. 3b). In addition to that, PIN6-OE#14 also exhibited a slightly and consistently elevated level of IAAsp as it was shown earlier for transgenic lines overexpressing ER-localized PIN5 (Mravec et al., 2009).

Altogether, these results suggest a role of PIN6 in regulation of cellular auxin levels and homeostasis.

PIN6 mediated auxin homeostasis regulates lateral and adventitious root development

Next, we analyzed how the function of PIN6 in auxin transport and homeostasis is reflected in developmental processes. The PIN6
expression pattern (Benková et al., 2003) and gain-of-function studies (Cazzonelli et al., 2013) clearly indicated role of PIN6 in lateral root development. Therefore, we monitored the expression of the auxin response marker DR5:GUS (Ulmasov et al., 1997) during this process in seedlings with changed PIN6 activity. We observed a reduced auxin response in PIN6 overexpression lines.

Fig. 2 PIN6 is a functional auxin transporter in yeast Saccharomyces cerevisiae microsomal fractions and Nicotiana tabacum cv BY-2 cells. (a) Radiolabeled indole-3-acetic acid (IAA) retention assay in a PIN6-overexpressing yeast microsomal fraction. Radioactivity is expressed as disintegrations per minute (dpm). Error bars, ±SD (n = 3) (b) PIN6 overexpression phenotype of tobacco BY-2 suspension grown cells. Image shows a clear phenotypic change between WT (wild-type, BY-2) and uninduced and PIN6-induced cells. (c) Graph representing the PIN6 overexpression phenotype in terms of cell length and diameter in comparison of tobacco BY-2 cells conditionally expressing PIN6. (d) Accumulation of radiolabeled naphthalene-1-acetic acid (NAA) as approximation of the active auxin efflux in both PIN6 induced and uninduced BY-2 cells. 1-Naphthylphthalamic acid (NPA) was used as an inhibitor of the auxin efflux. (e) Accumulation of radiolabeled 2,4-dichlorophenoxyacetic acid (2,4-D) in both PIN6 induced and uninduced BY-2 cells. Graph representing two independent (biological) experiments. Error bars, ±SD (technical repetitions, n = 3); if not visible, they fall into symbols.
During initial stages of lateral root development but a slightly increased response at the tips of developed lateral roots after decapitation (Fig. 4f). Thus, the pin6 gain- and loss-of-function show opposite effects on adventitious root formation. In summary, the expression and function analysis revealed a role of PIN6 besides lateral root also in adventitious root development.

Discussion

The amino acid sequence with its ‘intermediate’ hydrophilic loop places PIN6 between ‘long’, PM-localized and ‘short’ ER-localized PIN variants (reviewed in Adamowski & Friml, 2015). Previous work has shown that PIN6 localizes to the ER in BY-2 suspension cultured cells (Mravec et al., 2009) and Arabidopsis leaf vasculature (Sawchuk et al., 2013). Another study reported the localization of PIN5 when its short hydrophilic loop was replaced with that of PIN2 (Ganguly et al., 2014). The same study also reported the PM localization of PIN5 in the PIN2 expression domain.

Our study explicitly demonstrates the dual localization of PIN6 in all cell types analyzed. This means that PIN6 itself carries molecular cues necessary to be localized both on the PM or ER. The overall PIN6 localization pattern under native and 35S promoters appear slightly different because of the different strength of the signal and different cell types they are expressed in. Nonetheless, in both cases, we see consistently both ER and PM signal whereas overexpression of PIN1 or other ‘classical’ PM PIN proteins did not result in ER localization neither in BY-2 nor in Arabidopsis regardless of the level of expression (Petrášek et al., 2006; Mravec et al., 2009; Löffke et al., 2013). To further support the PM presence of PIN6, the PIN6 transport characteristics are similar to those found for ‘long’ PINs (Petrášek et al., 2006). It is also worth noting that characteristic tyrosine motif (TPNTY), which is missing in PIN5 and is believed to be the signal related to the PM trafficking (Mravec et al., 2009), is intact in PIN6 and there is also little variation in the amino acid sequence around this motif.
The higher retention of radioactive IAA in PIN6 over expressed yeast microsomal fraction is not providing information about PIN6 mediated auxin transport direction but it indicates that IAA is a substrate for PIN6. The reduction of the 2,4-D accumulation after PIN6 induction suggests that 2,4-D is also a substrate for PIN6, which is not a unique property for AtPIN6 alone. Active efflux of 2,4-D was also enhanced after the inducible overexpression of other PINs in BY-2 cells especially in the case of AtPIN7 as published in Petrášek et al. (2006). It is also valid for other long PINs tested in our system. So part of PIN6 auxin transport characteristics is analogous to already characterized PM localized long PINs.

The auxin metabolic profile of BY-2 cells overexpressing PIN6 showed a higher short-term retention of the free IAA, which contradicts the auxin starvation phenotype after prolonged PIN6 overexpression in BY-2 cells. Similarly, elevated free IAA was detected in the PIN6 overexpressor Arabidopsis roots but the initial stage of the lateral root development in the same line showed reduced DR5-monitored auxin response and only slightly higher auxin response in the emerged lateral root tips. This observation may reflect a special property of PIN6 in regulating auxin homeostasis in a developmental stage-specific manner. It is plausible that PIN6 overexpression causes intracellular compartmentalization of free IAA with hard-to-predict consequences on the

Fig. 4 PIN6 mediates auxin-dependent lateral and adventitious root development in Arabidopsis thaliana. (a) Effect of PIN6 overexpression and knock-out on auxin response during lateral root development as monitored by the DR5:GUS signal. The image shows emerged lateral roots and two earlier stages of the lateral root development (from right to left). (b) Graph showing the emerged lateral roots of 8-d-old PIN6 overexpression and knock-out lines. LR, lateral roots, three independent experiments (n = 15). (c) Total lateral root primordia density (calculating all stages of primordia development) in control (Col-0), PIN6 overexpression (PIN6-OE#14) and knock-out (pin6-2) lines, three repeats (n = 15). (d) Effect of different concentrations of exogenously applied auxin on lateral root number in PIN6-OE#14 and pin6-2 lines expressed as a percentage of nontreated (100%) in each line (n = 15). (e) PIN6:GUS expression during adventitious root development is shown in stages of root initiation and emergence. (f) Effect of PIN6 overexpression and knock-out in adventitious root development. The graph shows both intact and primary root-decapitated variants of seedlings and the effect on adventitious root formation, as a proportion of intact Col-0 (100%) (n = 15). Significance (Student’s t-test) between control and experimental plants: *, P < 0.05; **, P < 0.01. Error bars, ±SD (b–d, f).
overall auxin metabolism and free IAA levels. Our study also observed minor localization of PIN6 at the Golgi and TGN compartments but would be worth to extend the localization study to other intracellular compartments, in particular the vacuole since a previous study identified free IAA and IAA metabolites in vacuoles isolated from Arabidopsis (Ranocha et al., 2013). The higher auxin response at the lateral root tip may be due to the contribution of the polarly, PM-localized PIN6. It is also possible that PIN6 may have a tissue-specific, preferentially either PM or ER localization. There is also a strong expression of PIN6 in the shoot–root junction, which may act as a ‘gate’ for the auxin coming from the shoot and absence of this barrier could be the reason for the elevated auxin content in the pin6 knock-out mutants. Considering the complex localization pattern and auxin transport and homeostasis roles of PIN6, in future it would be interesting to see them expressed specifically in different cell types to analyze the differential localization pattern and auxin content regulation in different cell types.

Taken together, these results demonstrate a dual, PM- and ER-based, subcellular distribution of the atypical auxin transporter PIN6 and suggest its complex role in the control of auxin transport and homeostasis during auxin-mediated development including the lateral and adventitious root organogenesis.

Acknowledgements

This work was supported by the European Research Council (project ERC-2011-StG-201011109-PSDP, project CEITEC (CZ.1.05/1.1.00/02.0068) and the Czech Science Foundation GACR (project no. 13–40637S to J.F. and 16–10948S to E.Z.); FONDAP-CRG 15090007 and Basil PB16 (to A.O.). The authors thank Enrico Scarpella and Clay Carter for kindly providing published materials; Klára Hoyerová, Marleen Vanstraelen and Zhaojun Ding for helpful discussion and help with experiments.

Author contributions

References

Liang F, Sze H. 1998. A high-affinity Ca++ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin. Plant Physiology 118: 817–825.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Cladogram showing the evolution of PIN proteins.

Fig. S2 Functionality of the *35S:PIN6-GFP1* construct in *Arabidopsis thaliana* seedlings.

Fig. S3 PIN6 co-localization study with different markers in *Arabidopsis thaliana* roots.

Fig. S4 PIN6:GUS expression in shoot–root junction of *Arabidopsis thaliana* seedling.

Table S1 Primer sequences used for the preparation of PIN6-GFP constructs through overlap PCR

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.